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Abstract

Individual health care expenditures have complex non-normal dis-
tributions with severe positive skewness and leptokurtosis. These fea-
tures present severe challenges to reliable modeling of expenditures for
prediction purposes. We compare a variety of methods using quasi-
experimental techniques. Our quasi-experiments combine the distri-
butional realism of actual data on health care expenditures with the
robustness and reliability of Monte Carlo experiments. We find that
models based on Gamma densities perform substantially better than
models based on linear regression, with and without transformation.
In addition, finite mixtures of Gamma densities offer some promising
improvements over their one-component degenerate counterparts.



1 Introduction

Health care expenditures are non-negative random variables that can be sta-

tistically characterized by a non-trivial fraction of zero outcomes, a positively

skewed empirical distribution of the positive values, and a density that is

not easily characterized by known parametric forms. Jones (2001) discusses

these and other analytical difficulties that plague research on health care

expenditures differences across individuals. Our research, in which we fo-

cus on modeling positive health care expenditures, extends the literature in

two important ways. First, we propose the use of finite mixture models for

estimating health care expenditures which can serve as approximations to

unknown probability densities (Lindsay, 1995; McLachlan and Peel, 1999).

Second, we conduct an extensive evaluation of a number of econometric mod-

els in a quasi-experimental framework which combines the rigor of Monte

Carlo experiments with the distributional realism of actual data.

Earlier work on modeling individual health care expenditures focused on

the use of transformations of the dependent variable in linear regression mod-

els to improve the quality of estimates and predictions. Recent research has

considered generalized linear models for estimating expenditures. Blough,

Madden and Hornbrook (1999) demonstrate the feasibility of such models

but do not directly compare their models with standard approaches. Man-

ning and Mullahy (2001) show that the generalized linear model based on

the Gamma density has promise, but also that some classes of generalized

linear models are considerably more sensitive to data problems than OLS. In

general, known, parametric densities are inadequate approximations to the

true densities for health care expenditures, and robust estimators typically

sacrifice precision.
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Finite mixture models are, in principle, semiparametric and can approx-

imate any probability densities. In practice, however, they should be viewed

as flexible extensions of parametric models, potentially providing a compro-

mise between strongly parametric and fully semiparametric models. Finite

mixture models provide a natural and intuitively attractive representation

of heterogeneity in a finite number of latent classes. The choice of the num-

ber of components in the mixture determines the number of classes, and

the functional form for the density accommodates heterogeneity within each

component. James Heckman’s Nobel lecture states:

“A major empirical finding in the work of Heckman and Singer

that has been replicated in numerous subsequent studies is that

distributions for unobservables can be approximated by low-

dimensional finite mixtures or ‘types’.” (2001, p. 711).

Deb and Trivedi (1997, 2002) have demonstrated the superior performance

of finite mixtures models for counts of health care utilization. Deb and

Holmes (2001) show that a finite mixture model for positive mental health

care expenditures provides more reliable estimates than the log regression

model. Consequently, we evaluate a class of finite mixture models for health

care expenditures in our quasi-experiment.

In addition to finite mixture models, we also consider linear regression

models with and without transformations and generalized linear models (Mc-

Cullagh and Nelder, 1989) based on the gamma density. We conduct an

extensive evaluation of these models in a quasi-experimental framework.

As in Monte Carlo experiments, confidence in results is achieved through

replication. However, our experimental samples are not drawn from known

distributions. Such data are unlikely to capture all the relevant features of
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the empirical distribution of health care expenditures. Instead, we assume

that all relevant features of the empirical distribution of health care expen-

ditures are present in the very large dataset we use so that sampling from it

is equivalent to sampling from the distribution of health care expenditures

in the population. To the extent that these data mimic features of health

care expenditures in other populations, our quasi-experimental samples will

be informative for models of health care expenditures in those populations.

We use annual patient expenditures and ICD-9-CM diagnoses from Fiscal

Year 2000 US Department of Veterans Affairs (VA) as the basis for our

quasi-Monte Carlo experiment. In the following section of the paper, we

formally present the competing models used in this paper and discuss model

comparison strategies. The data are described in section 3 and empirical

results in section 4. We conclude in section 5.

2 Methods

2.1 Econometric Models

Let yi denote health care expenditures for person i and xi denote the set of

covariates including the intercept. We estimate the following econometric

models.

A linear conditional mean model is estimated using OLS so that

bβ = argmin
NX
i=1

{yi − xiβ}2 , (1)

byp = xpbβ,
where byp denotes a conditional prediction. OLS with a linear mean has the
desirable feature that it provides an unbiased predictor of health expendi-

tures regardless of the distribution of the error term and the presence of
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heteroskedasticity. Nevertheless, given the extreme skewness of health care

expenditures, it is possible that point forecasts obtained from this model

may not be very precise. Note that this model is equivalent to the GLM

model based on the normal density with linear link.

Two widely applied alternatives to the linear mean in the OLS context

use transformations of the dependent variable. In the log model,

bβ = argmin
NX
i=1

{log(yi)− xiβ}2 , (2)

byp = exp(xpbβ) · 1
N

NX
i=1

exp
n
log(yi)− xibβo ,

and in the square root model,

bβ = argmin
NX
i=1

{√yi − xiβ}2 , (3)

byp = (xpbβ)2 + 1

N

NX
i=1

n√
y − xibβo2 ,

where the second term in each formula for the conditional prediction is a

nonparametric smearing factor needed to retransform the prediction into

the raw scale. Although these transformed models are designed to account

for the skewness in health expenditures and the retransformation factors do

not depend on normality of the errors, their predictions are not robust to

heteroskedasticity in the transformed scale.

The model with the linear mean has an added advantage over models

with complex mean specifications in that the regression coefficients are the

average incremental costs of each disease and hence can be used to assess

the face validity of the regressions. If used for rate setting, for example,

plan managers would be very uncomfortable with negative regression coeffi-

cients or coefficient values outside the range of their intuitive expectations.
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Often such models are recalibrated in ad hoc fashion until no “offending”

coefficients remain (Ellis, R.P., personal communication). On the other

hand, while the log and square root models generate positive conditional

mean forecasts regardless of whether individual coefficients are positive or

negative, the linear mean model may indeed generate negative predictions,

which clearly lack face validity. To assess the consequences of imposing such

face validity, i.e., restricting the conditional mean to be positive, we use the

estimates from the linear OLS model to generate predictions of the form

byp = max(xpbβ, 0). (4)

The second set of models are in the GLM class. These models require

only correct specification of the conditional mean for consistency and are

quite flexible. We estimate GLMs based on the Gamma density as these

have been shown to have desirable properties. We consider linear and square

mean specifications so that

bβ = argmax
NX
i=1

½
− yi
xiβ

+ log

µ
1

xiβ

¶¾
, (5)

byp = xpbβ
and

bβ = argmax
NX
i=1

½
− yi
(xiβ)2

+ log

µ
1

(xiβ)2

¶¾
, (6)

byp = (xpbβ)2,
respectively.

Finally, we estimate 2 models that are based on finite mixtures of den-

sities. The random variable yi in a finite mixture model is assumed to be a

drawn from an additive mixture of C distinct subpopulations or components
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in proportions π1, ...,πC , where
PC
j=1 πj = 1, πj > 0 (j = 1, ..., C). The

mixture density for observation i, i = 1, ..., n, is given by

f(yi|θ) =
C−1X
j=1

πjfj(yi|θj) + πCfC(yi|θC), i = 1, ..., n, (7)

where πC = 1−
PC−1
j=1 πj . Each term in the sum on the right-hand side is the

product of the mixing probability πj and the component density fj(yi|θj)
which has parameters θj . In general, the πj are unknown and estimated

along with θj . A labelling restriction that π1 ≥ π2 ≥ .... ≥ πC , which can

always be satisfied by rearrangement, is required for identification (normal-

ization). Given our success with the gamma density in preliminary analysis,

we consider models based on mixtures of gamma’s:

bβj , bπj = argmax
NX
i=1

log


C−1X
j=1

πj · exp
µ
− yi
xiβj

¶µ
1

xiβj

¶ , (8)

byp =
C−1X
j=1

bπjxfbβj, j = 1, 2, ..., C.

where βj and πj are estimated jointly.

We consider finite mixture models with linear mean specifications and

two or three gamma component densities. Although both the specification

of the mean and the number of components are trivially modified in prin-

ciple, we restrict our attention to linear mean specifications for reasons of

face validity discussed above and to two and three components for compu-

tational feasibility given the large scale of our study. Note that the model

given by (8) is a generalization of (5), but it is possible that the two- and

three-component mixture models perform worse than their one-component

(degenerate) counterparts in finite samples.

Table 1 provides labels for each of the models considered in our experi-

ments along with brief descriptions of the estimation method and prediction
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functions. The labels are subsequently used in our description of the results.

2.2 Experimental Design

The study design is quasi-experimental. Monte Carlo principles are used to

create ‘experimental’ samples and confidence in results is achieved through

experimental replication. However, unlike ‘true’ Monte Carlo experiments,

our ‘experimental’ samples are drawn from real data with unknown distrib-

ution rather than artificial data drawn from a known distribution. It is well

known that health care expenditures do not follow any known parametric

distribution and that the characteristics of extreme observations make pre-

dicting health care expenditures a difficult exercise. Therefore, if we used

data drawn from a known distribution in our study, it would likely not cap-

ture all the features of the empirical distribution of health care expenditures,

and would have the additional drawback that it would always be possible to

include an econometric model in the study that would a priori be closer to to

the true data generating density (or even be correctly specified). Instead, we

assume that all relevant features of the empirical distribution of health care

expenditures are present in a very large dataset we use so that sampling from

it is equivalent to sampling from the distribution of health care expenditures

in the population. To the extent that these data mimic features of health

care expenditures in other populations, our quasi-experimental samples will

be informative for models of health care expenditures in those populations.

The dataset consisting of 2,979,760 observations was randomly split

two groups: 1,500,000 observations were assigned to the estimation group

and 1,000,000 to the prediction group. Note that these groups are quite

large and reasonably might be treated as pseudo-populations. We were

restricted to these sizes by computer memory considerations. Samples of
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size N ∈ {10000, 50000, 100000, 200000, 500000} were drawn from the esti-

mation group using simple random sampling with replacement. Note that

most practical public or private populations in managed care plans or health

care provider systems in the US fall in the range of our sample sizes (see e.g.,

Dunn, 1998, which analyzes risk adjustments in four populations of 240,000,

120,000, 115,000 and 70,000). The parameters of the models described above

were estimated for each sample and saved. This process was repeated 20

times for each sample size. The parameters obtained from each replication

were used to calculate conditional means using all million observations from

the prediction group. Two statistics were calculated to evaluate the quality

of the predictions: the mean prediction error

MPE =
1

Nf

NfX
i=1

(byf − yi) , (9)

and the mean absolute prediction error

MAPE =
1

Nf

NfX
i=1

|byf − yi| . (10)

We also calculated each of these statistics after trimming the sample by

eliminating 0.5% of the largest expenditures (Nf = 995, 000) for two rea-

sons. First, each of these statistics may be unduly affected by a very small

fraction of extremely large expenditures in the prediction sample and these

extreme observations may not regularly appear in smaller populations. Sec-

ond, the design of many pricing schemes include reinsurance for very large

expenditures so models should be evaluated on the observations not eligible

for reinsurance.

Practitioners using models to determine costs of illnesses for rate-setting

and other purposes sometimes top-code large expenditures to stabilize re-

gression estimates. To evaluate the effects of such top-coding, we repeated
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the set of experiments described above with values of expenditures in the

estimation samples top-coded at 100,000 (100,000 represents the 99.6th per-

centile in the full dataset). We evaluated predictions based on these esti-

mates using the prediction sample unchanged as well as trimmed and top-

coded. We are agnostic regarding the merits of top-coding and trimming.

Thus, we present results for all sets of experiments below.

2.3 Response Surfaces

For any statistic of interest, ideally one would like to compute analytical

formulae for its predicted values as a function of experimental characteris-

tics. For example, if the statistic of interest is bias and one is interested

in determining how bias decreases as the sample size increases, the ideal

would be an analytical formula that related bias to sample size. If these

are not known, it is possible to approximate them using polynomial ap-

proximations to the true functional forms. Regressions of these polynomial

approximations are called response surfaces. Response surface methodology

facilitates understanding of experimental evidence because large amounts of

experimental data can be summarized using simple functional forms. It also

provides applied researchers a simple tool for computing outcomes at points

in the design space that are not included in the experimental study. An-

other advantage, especially for computationally intensive processes, is that

a large number of replications is not required. See Maasoumi and Phillips

(1982), Hendry (1982), and Davidson and MacKinnon (1993) for detailed

discussions of the merits of response surface methodology. Each of these

advantages of response surface methodology is important in the context of

our study relative to simple tabulation of the results: we have many design

points (model×sample size), interest in performance at other sample sizes,
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and very computationally intensive estimation.

Let the models in this study be numbered by m = 1, 2, ..., 8. Let j =

1, 2, ..., (8 × 5 × 20) denote an observation consisting of the statistics of
interest (MPEj,MAPEj) and d[m]j which are dummy variables indicating

the model on the basis of which the statistic was calculated. Let Nj denote

the sample size used for estimation of the model. The response surfaces for

MPE is specified as

MPEj =
8X

m=1

α[m]d[m]j +
8X

m=1

γ[m]d[m]j
Nj

+ uj , (11)

where α[m] and γ[m] are regression coefficients. The second term in the

right hand side of the regression reflects the fact that MPE is expected to

decline at the rate N . Note that in each response surface regression, α[m]

denotes the asymptotic expected value of MPE for model m. Expected

MPE for desired finite sample sizes can be calculated by plugging in those

sample sizes.

MAPE only takes positive values, so its response surface is specified in

logarithms, i.e.,

log(MAPEj) =
8X

m=1

α[m]d[m]j +
8X

m=1

γ[m]d[m]j
Nj

+ uj. (12)

Now differences in values of α[m] represent percentage differences inMAPE

across models.

3 Data

The VA operates the largest health care system in the US with 163 hospitals,

more than 800 community and facility-based clinics, 135 nursing homes, and

other facilities. With a medical care budget of more than $19 billion in
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FY2000, VA provided care to 3.8 million unique users, 3,000,499 of whom

were provided care under priority for service connected disabilities, meeting

an income/wealth based means test, or from a variety of smaller health care

need and veteran specific reasons. 2,979,760 of these patients have measured

costs accurate enough to be included in the patient sample that serves as

the sampling population for our analysis as described above.

In recent years, the most important advances in risk adjusting patient

populations to explain health care expenditures have employed diagnostic

information to characterize disease patterns. There are two basic strands of

analysis that flow from this work. Most commonly, analysis has focused on

predicting the health care utilization of enrolled patient populations next

year from diagnoses and other information (possibly even including costs)

collected this year. This is called prospective modeling. However, a growing

application of risk adjustment is in helping integrated health care delivery

systems or insurers understand differences in the risk of current populations,

for budget allocation or rate setting purposes. We employ this type of

concurrent modeling in this paper.

We provide summary statistics for costs in Table 2. The estimates are

based on a sample size of 2,500,000 that comprise the combination of our

estimation and prediction samples. As is well known for health care ex-

penditures in other contexts, expenditures for the VA population are also

highly skewed and leptokurtic. When logarithms of health care costs are

examined, skewness and kurtosis are considerably smaller but statistically

significant. As a comparison, we also report summary statistics of health

care expenditures for a representative sample of the US population in 1996

obtained from the Medical Expenditure Panel Survey (MEPS) and for the

sub-sample of MEPS respondents enrolled in Medicare. The results in Ta-
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ble 2 show that the statistical characteristics of health care expenditures

of the Medicare population are very similar to those of the VA population

and that the distribution of health care expenditures for the US popula-

tion overall are considerably more skewed and leptokurtic than either of the

sub-populations. Note that as the data are refined into more homogeneous

populations, the skewness and kurtosis moment measures fall.

To characterize the explainable portion of variation in expenditures, we

employ Diagnostic Cost Group (DCG)/Hierarchical Coexisting Conditions

(HCC) models (Ellis, et al. (1996), Ash, et al. (1998), Pope, et al. (1998))

to group ICD-9-CM diagnoses into HCC indicator groups as explanatory

variables for health care expenditures. This model takes the 15,000 ICD-9-

CM codes, groups them into categories and then places the groups into body

system/clinical condition specific hierarchies. These hierarchies allow some

multiple HCC’s and disallow others, helping to address overfitting problems

when people with complex diagnoses also by definition have less complex

ones in the same hierarchy. Out of the 118 HCC’s in Version 5 of the DCG

model, we employ 42 HCC’s in our model that appear with a frequency of at

least 1 percent in the sample of 2,500,000. Brief descriptions of the HCC’s

and their sample frequencies are reported in Table A1.

4 Results

As described above, 5 different sample sizes were considered for estimation

and each experiment was replicated 20 times. OLS estimates are trivially

obtained. The log likelihood functions of GLM models with gamma base-

line density are typically well behaved so ML estimation is easy to conduct,

though obviously computationally intensive for some of the larger sample
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sizes. The log likelihood functions of finite mixture models are not so well

behaved in principle. They can have multiple optima. In practice one can

overcome this potential problem simply by experimentation with starting

values although more complex algorithms are also available to avoid conver-

gence to local optima. But in this experimental setting, it was not feasible

to ensure convergence to the global maximum in each case. For the two-

component mixture model, we used starting values based on the converged

estimates of the Gamma model (degenerate mixture) which it generalized.

For the three-component mixture model, we used starting values based on

the converged estimates of the two-component mixture. Although these are

reasonable starting values, convergence to a local optimum cannot be ruled

out. Therefore, the results for the finite mixture models may be contami-

nated by non-maximized estimates, thus should be treated as the worst case

scenarios.

The experimental samples of MPE and MAPE consist of 800 observa-

tions each. Response surfaces regressions specified as (11) and (12) samples

were estimated and the parameter estimates are reported in Tables 3 and

4. In each case, the R2 of the regressions are over 0.99 demonstrating that

they are very well specified and capture most of the variation across design

points.

The asymptotic expected values ofMPE indicate how the average value

of predicted health care expenditure from a particular model compares to

the average health care expenditure in the prediction sample. The results in

Table 3 show that the linear and square root regression models estimated by

OLS have negligible bias when the sample used to evaluate the predictions is

created under the same rules as the sample used to estimate the model, i.e.,

when both estimation and prediction samples are either unchanged from the
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raw data or are topcoded. All other models have substantially larger biases.

Predictions from both finite mixture models are downward biased. However,

FM3-Γ-linear has lower bias than FM2-Γ-linear. In the trimmed prediction

samples, predictions from the finite mixture models [FM2-Γ-linear and FM3-

Γ-linear] have the smallest biases. Both ols-linear and ols-square root are

upward biased. The results for the unchanged and trimmed prediction sam-

ples taken together indicate that the lower bias of the linear OLS model is

due to its ability to predict the largest expenditures well. Note also that

the OLS model with non-negative predictions [ols-linear>0] has a signifi-

cant bias in each case, overpredicting relative to the standard OLS model

[ols-linear] by about $60 on average.

As discussed above, the choice of functional form for the specification of

the conditional mean is important for a variety of reasons. Although the lin-

ear conditional mean has virtues in its simplicity and ease of interpretation,

the square and exponential conditional means have other attractive virtues.

The results show that the log regression model performs surprisingly poorly

vis-a-vis the alternatives. It produces substantially upward biased predic-

tions. In preliminary work we found that the gamma model with exponential

link also performed very poorly hence was eliminated from further consid-

eration. We have chosen to include the log regression model because it is a

leading model among those used in existing empirical studies. Within the

family of linear regression models, the linear and square root models have

very similarMPE’s. It is not possible to discriminate between the two mod-

els on this basis. In the case of GLM models based on the Gamma density,

there are differences in MPE’s between linear and square links, but neither

dominates.

TheMPE of FM2-Γ-linear is smaller than theMPE of FM3-Γ-linear in
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every case. Given that FM2-Γ-linear generally underpredicts expenditures,

these features suggest that the third component in FM3-Γ-linear captures

the heterogeneity inherent in some of the very large expenditures. It is

plausible that additional components would provide further improvement in

MPE.

The asymptotic expected values of log(MAPE) indicate how values of in-

dividual predicted health care expenditures from a particular model compare

to the values of actual health care expenditures in the prediction sample.

Models with lower values of log(MAPE) predict individual expenditures

better than models with higher values. The results in Table 4 show that the

two-component finite mixture model with gamma densities dominates the

rest by theMAPE criterion. When both estimation and prediction samples

are either unchanged from the raw data, FM2-Γ-linear has an 11 percentage

point lowerMAPE than the linear regression model and 2 percentage point

lower MAPE than Γ-linear. Interestingly, the MAPE of FM3-Γ-linear is

worse than FM2-Γ-linear and, indeed, is comparable to the MAPE from

Γ-linear. There are two potential reasons for this decline in performance.

First, it is possible that this is manifestation of a MPE−MAPE trade-off
which appears is many statistical contexts. In our context, it would most

likely be due to the fact that by increasing the ability of the model to pre-

dict the small number of high expenditures well, the three-component model

was doing worse at predicting the large number of lower expenditures. Sec-

ond, it is possible that the parameter estimates of three-component model

are based, in a substantial fraction of cases, on log likelihood values that are

not globally maximized. This is plausible because the log likelihood function

of the three-component model have multiple optima, in principle. Unfortu-

nately, a closer investigation of these possibilities is beyond the scope of this
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paper.

The OLS model with logarithmic transformation continues to perform

very poorly. The MAPE from the square root model is always lower than

the MAPE from the linear model in the regression case, but the relative

performance of the linear and square conditional means are reversed in the

Γ GLM models.

The finite sample values of MPE and MAPE and their rates of con-

vergence to the asymptotic values of are also described by the estimates

in Tables 3 and 4 respectively, but these are obviously not transparent.

Therefore, in Figures 1 and 2, we plot the values of MPE and log(MAPE)

expected at different sample sizes for three of the leading models with linear

mean specifications - ols-linear, Γ-linear and FM2-Γ-linear. As was evident

from the regression estimates, ols-linear has the lowest bias when prediction

samples are unchanged, but that models in the gamma family, Γ-linear in

one case and FM2-Γ-linear in the other, have lower biases when the predic-

tion sample is trimmed. The rates of convergence of ols-linear and Γ-linear

to the asymptotic MPE is very quick; 15,000-20,000 observations appear

to be sufficient. On the other hand, convergence is slower for the mixture

model, as expected. But even for FM2-Γ-linear sample sizes of 30,000-40,000

are sufficient to ensure asymptotic values of MPE.

MAPE converges at similar rates. The advantages of the models based

on the gamma density vis-a-vis ols-linear are dramatic. The gains from using

FM2-Γ-linear are in the order of 2-3 percentage points for sample sizes over

20,000. In the context of the budgets at stake in many rate-setting exercises,

these gains are substantive.
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5 Conclusion

Many health outcome variables in health economics deviate from known

parametric densities even upon tranformation and reliable estimation meth-

ods for practical purposes continues to be an unsettled issue. The pseudo-

Monte Carlo experiments reported in this paper subject a number of plau-

sible econometric models to tests in a variety of dimensions. The results

demonstrate that models with linear mean specifications perform at least

as well as models with more complex means or those that require retrans-

formation. Linear regression models estimated by ordinary least squares

produce unbiased predictions, but individual predictions relatively impre-

cise. Because there exist incentives for providers to miscode, misreport, etc.

when payments deviate substantially from costs, unbiased predictions are an

inadequate criterion for a good econometric model. The ideal standard in-

volves predicting individual expenditures as well as possible given the data.

A GLM model based on the Gamma density with a linear link has reason-

able bias properties and superior individual predictions vis-a-vis the linear

regression model. A finite mixture model constructed using two Gamma

densities with linear means has lower biases in some cases and superior in-

dividual predictions in every case relative to the GLM model based on the

Gamma density. Adding a third component to the mixture model appears

to improve biases but at the cost of poorer individual predictions.

In practice, estimation of finite mixture models raises some computa-

tional difficulties, especially as the number of points of support in the mix-

ture distribution increases. This paper shows that there are substantial gains

in predictive performance associated with the use of finite mixture models

with two components, The finding is consistent with conventional wisdom
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and empirical evidence in the literature on finite mixture models that two

to four points of support are typically sufficient. A small number of com-

ponents is more likely to be sufficient if one starts with a baseline density

that forms a reasonable first approximation to the true data density. There-

fore, given the advances in computer hardware and statistical computing

technology, the computational burden of finite mixture models should not

discourage its use.
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Table 1
Description of Models

Label Estimation method Prediction function
1 ols-linear OLS xiβ

2 ols-log OLS exp(xpbβ) · 1N PN
i=1 exp

n
log(yi)− xibβo

3 ols-square root OLS (xpbβ)2 + 1
N

PN
i=1

n√
y − xibβo2

4 ols-linear>0 OLS max(xiβj , ε)
5 Γ-linear ML, Γ density xiβ
6 Γ-square ML, Γ density (xiβ)

2

7 FM2-Γ-linear ML, mixture of 2 Γ’s
PC−1
j=1 bπjxfbβj, j = 1, 2

8 FM3-Γ-linear ML, mixture of 3 Γ’s
PC−1
j=1 bπjxfbβj, j = 1, 2, 3
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Table 2
Summary Statistics of Costs

Cost/$1000 log(Cost/$1000)
VA MEPS VA MEPS

All Medicare All Medicare
N 2500000 18490 2588 2500000 18490 2588
Mean 5.342 2.372 6.185 0.411 -0.564 0.738
Median 1.537 0.527 2.097 0.430 -0.641 0.741
Std Deviation 14.804 8.572 12.521 -0.102 1.637 1.549
Skewness 9.717 21.287 6.388 -0.102 0.212 -0.201
Kurtosis 203.512 850.131 68.772 0.697 -0.151 0.161
99th percentile 70.322 29.852 58.440 4.253 3.396 4.068
95th percentile 22.612 9.491 25.773 3.118 2.250 3.249
75th percentile 3.839 1.699 5.883 1.345 0.530 1.772
25th percentile 0.586 0.180 0.798 -0.534 -1.715 -0.225
5th percentile 0.107 0.180 0.149 -2.235 -3.147 -1.904
1st percentile 0.032 0.180 0.038 -3.442 -4.605 -3.270
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Table 3
Response Surface Regressions for Mean Prediction Error

Estimation Sample Unchanged Unchanged Top-coded Top-coded Top-coded
Prediction Sample Unchanged Trimmed Unchanged Trimmed Top-coded
ols-linear -0.010 0.592 -0.246 0.372 -0.002

(0.014) (0.013) (0.012) (0.011) (0.012)
ols-log 3.932 3.965 3.589 3.667 3.833

(0.014) (0.013) (0.012) (0.011) (0.012)
ols-square root -0.013 0.604 -0.248 0.376 -0.004

(0.014) (0.013) (0.012) (0.011) (0.012)
ols-linear>0 0.050 0.653 -0.194 0.423 0.049

(0.014) (0.013) (0.012) (0.011) (0.012)
Γ-linear -0.417 0.210 -0.617 0.019 -0.374

(0.014) (0.013) (0.012) (0.011) (0.012)
Γ-square 0.138 0.716 -0.082 0.510 0.161

(0.014) (0.013) (0.012) (0.011) (0.012)
FM2-Γ-linear -0.641 -0.002 -0.745 -0.104 -0.502

(0.014) (0.013) (0.012) (0.011) (0.012)
FM3-Γ-linear -0.411 0.217 -0.577 0.057 -0.334

(0.014) (0.013) (0.012) (0.011) (0.012)
ols-linear / N -0.102 -0.087 -0.336 -0.339 -0.336

(0.312) (0.281) (0.268) (0.241) (0.268)
ols-log / N 1.635 1.367 0.170 0.066 0.170

(0.312) (0.281) (0.268) (0.241) (0.268)
ols-square root / N -0.027 -0.019 -0.272 -0.276 -0.272

(0.312) (0.281) (0.268) (0.241) (0.268)
ols-linear>0 / N -0.061 -0.046 -0.376 -0.379 -0.376

(0.312) (0.281) (0.268) (0.241) (0.268)
Γ-linear / N 0.134 0.142 -0.176 -0.176 -0.176

(0.312) (0.281) (0.268) (0.241) (0.268)
Γ-square / N 0.130 0.150 -0.550 -0.536 -0.550

(0.312) (0.281) (0.251) (0.241) (0.268)
FM2-Γ-linear / N 1.389 1.368 0.411 0.415 0.411

(0.312) (0.281) (0.268) (0.241) (0.268)
FM3-Γ-linear / N 1.434 1.403 1.057 1.041 1.057

(0.312) (0.281) (0.268) (0.241) (0.268)

R2 0.994 0.995 0.995 0.996 0.995
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Table 4
Response Surface Regressions for Mean Absolute Prediction Error
Estimation Sample Unchanged Unchanged Top-coded Top-coded Top-coded
Prediction Sample Unchanged Trimmed Unchanged Trimmed Top-coded
ols-linear 1.516 1.380 1.484 1.338 1.427

(0.002) (0.002) (0.001) (0.001) (0.001)
ols-log 2.038 1.908 2.001 1.872 1.982

(0.002) (0.002) (0.001) (0.001) (0.001)
ols-square root 1.463 1.314 1.437 1.282 1.378

(0.002) (0.002) (0.001) (0.001) (0.001)
ols-linear>0 1.502 1.364 1.472 1.325 1.414

(0.002) (0.002) (0.001) (0.001) (0.001)
Γ-linear 1.431 1.273 1.414 1.251 1.353

(0.002) (0.002) (0.001) (0.001) (0.001)
Γ-square 1.448 1.307 1.425 1.277 1.366

(0.002) (0.002) (0.001) (0.001) (0.001)
FM2-Γ-linear 1.409 1.244 1.400 1.233 1.339

(0.002) (0.002) (0.001) (0.001) (0.001)
FM3-Γ-linear 1.431 1.274 1.416 1.254 1.355

(0.002) (0.002) (0.001) (0.001) (0.001)
ols-linear / N 0.156 0.175 0.048 0.055 0.051

(0.035) (0.039) (0.029) (0.032) (0.031)
ols-log / N 0.195 0.189 0.044 0.036 0.044

(0.035) (0.039) (0.029) (0.032) (0.031)
ols-square root / N 0.036 0.039 -0.005 -0.006 -0.005

(0.035) (0.039) (0.029) (0.032) (0.031)
ols-linear>0 / N 0.151 0.169 0.058 0.067 0.061

(0.035) (0.039) (0.029) (0.032) (0.031)
Γ-linear / N 0.094 0.108 0.031 0.036 0.03329

(0.035) (0.039) (0.029) (0.032) (0.031)
Γ-square / N 0.107 0.118 0.003 -0.002 0.003

(0.035) (0.039) (0.029) (0.032) (0.031)
FM2-Γ-linear / N 0.195 0.239 0.096 0.113 0.102

(0.035) (0.039) (0.029) (0.032) (0.031)
FM3-Γ-linear / N 0.181 0.223 0.140 0.172 0.149

(0.035) (0.039) (0.029) (0.032) (0.031)

R2 0.999 0.999 0.999 0.999 0.999
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Figure 1
Mean Prediction Error as a Function of Sample Size

Unchanged Estimation Sample
Unchanged Prediction Sample

Top-coded Estimation Sample
Unchanged Prediction Sample

Trimmed Prediction Sample
Unchanged Estimation Sample

Top-coded Estimation Sample
Trimmed Prediction Sample

Key: –– ols-linear – – Γ-linear - - FM2-Γ-linear
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Figure 2
Mean Absolute Prediction Error as a Function of Sample Size

Unchanged Estimation Sample
Unchanged Prediction Sample

Top-coded Estimation Sample
Unchanged Prediction Sample

Trimmed Prediction Sample
Unchanged Estimation Sample

Top-coded Estimation Sample
Trimmed Prediction Sample

Key: –– ols-linear – – Γ-linear - - FM2-Γ-linear
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Appendix: Table A1
Variable Description Frequency
HCC020 High Cost Chronic Gastrointestinal 0.010
HCC030 Dementia 0.028
HCC060 High Cost Vascular Disease 0.052
HCC080 Other Urinary System 0.070
HCC100 Minor Symptoms, Signs, Findings 0.323
HCC031 Drug/Alcohol Dependence/Psychoses 0.065
HCC051 Other Acute Ischemic Heart Disease 0.011
HCC091 Chronic Ulcer of Skin 0.017
HCC022 Moderate Cost Gastrointestinal 0.048
HCC032 Psychosis/Higher Cost Mental 0.088
HCC042 High Cost Neurological 0.022
HCC013 Diabetes with Chronic Complications 0.037
HCC023 Low Cost Gastrointestinal 0.177
HCC033 Depression/Moderate Cost Mental 0.070
HCC043 Moderate Cost Neurological 0.049
HCC053 Valvular and Rheumatic Heart Diseas 0.022
HCC063 Other Circulatory Disease 0.024
HCC113 Elective/Aftercare 0.129
HCC004 Other Infectious Disease 0.132
HCC014 Diabetes with Acute Complications 0.018
HCC044 Low Cost Neurological 0.042
HCC064 Chronic Obstructive Pulmonary Disea 0.118
HCC015 Diabetes with No or Unspecified Com 0.128
HCC025 Rheumatoid Arthritis/Connective Tis 0.018
HCC075 Low Cost Ear, Nose, and Throat 0.184
HCC006 High Cost Cancer 0.011
HCC116 Rehabilitation 0.036
HCC007 Moderate Cost Cancer 0.012
HCC017 Moderate Cost Endo/Metab/Fluid-Elec 0.026
HCC067 Low Cost Pneumonia 0.016
HCC097 Other Injuries and Poisonings 0.111
HCC008 Low Cost Cancers/Tumors 0.050
HCC028 Blood/Immune Disorders 0.013
HCC048 Congestive Heart Failure 0.059
HCC058 High Cost Cerebrovascular Disease 0.012
HCC078 Renal Failure 0.020
HCC098 Complications of Care 0.017
HCC118 History of Disease 0.063
HCC029 Iron Deficiency and Other Anemias 0.048
HCC049 Heart Arrhythmia 0.043
HCC059 Low Cost Cerebrovascular Disease 0.043
HCC099 Major Symptoms 0.156


